Артериальная гипертония и атеросклероз: как правильно выбрать антигипертензивные препараты?
О.Д. Остроумова, М.Л. Максимов, О.В. Дралова, А.С. Ермолаева
МГМСУ им. А.И.Евдокимова, МоскваПМГМУ им. И.М. Сеченова, Москва
Артериальная гипертензия (АГ) и атеросклероз являются наиболее важными факторами риска развития осложнений при сердечно-сосудистых заболеваний, что требует адекватного терапевтического вмешательства для первичной и вторичной профилактики. В статье рассматриваются вопросы патогенеза атеросклеротического процесса и рациональная терапия артериальной гипертензии на фоне атеросклероза.
Ключевые слова: атеросклероз, артериальная гипертензия, олмесартан.
Сведения об авторе:
Остроумова Ольга Дмитриевна – д.м.н., профессор, кафедра факультетской терапии и профессиональных болезней МГМСУ им. А.И. Евдокимова
Hypertension and atherosclerosis: how to choose antihypertensive drugs?
O.D. Ostroumova, M.L. Maximov, O.V. Dralova, A.S. Ermolaeva
A.I.Evdokimov MSMDU, Moscow
I.M.Sechenov FMSMU, Moscow
Hypertension and atherosclerosis are both the most significant risk factors of severe complications in cardiovascular diseases, so proper drugs for primary and secondary prevention are required. The paper reviews pathogenesis of atherosclerosis and rational treatment for hypertension at background of atherosclerosis.
Keywords: atherosclerosis, hypertension, olmesartan.
===
В настоящее время артериальная гипертензия (АГ) и атеросклероз являются наиболее важными факторами риска развития сердечно-сосудистых заболеваний (ССЗ), что требует адекватного терапевтического вмешательства для первичной и вторичной профилактики [1].
О взаимосвязи атеросклероза и АГ еще в 1965 году выдающийся отечественный кардиолог, основатель научной школы А.Л. Мясников в работе «Гипертоническая болезнь и атеросклероз» писал: «При общей оценке проблемы взаимоотношения гипертонической болезни и атеросклероза можно сформулировать две точки зрения. Согласно одной из них, гипертоническая болезнь и атеросклероз являются двумя совершенно разными нозологическими единицами: одна (гипертония) – болезнь нервная, другая (атеросклероз) – преимущественно метаболическая; одна – чисто функциональная (усиление тонуса сосудов), другая – органическая (липоидоз, бляшки). Частое сочетание этих двух различных заболеваний обусловлено некоторыми общими для обеих форм этиологическими и патогенетическими факторами. Оба заболевания взаимно влияют друг на друга. Практически мы встречаемся и с чистыми случаями обоих заболеваний, и со случаями комбинированными, с преобладанием то одного, то другого заболевания. Словом, это две разные, но взаимовлияющие болезни… Другая точка зрения на взаимоотношения гипертонической болезни и атеросклероза может быть сформулирована так: существует единая болезнь, которая проявляется в одних случаях клинико-анатомическим синдромом гипертонии, в других случаях – клинико-анатомическим синдромом атеросклероза, а чаще и тем, и другим болезненным процессом одновременно».
Действительно, сочетание АГ и атеросклероза – наиболее распространенная коморбидность. Так, результаты эпидемиологического обследования выборки мужчин в возрасте 20–59 лет, проживающих в Москве, показали высокую распространенность АГ в сочетании с дислипидемией. У больных АГ (артериальное давление (АД) более 160/95 мм рт.ст.) из этой выборки в 54,5% случаев имелась дислипидемия, а среди лиц с дислипидемией у 41% была АГ [2]. Наличие АГ у лиц с дислипидемией повышает смертность от ССЗ в 3 раза, а при сочетании с другими факторами риска – в 5–6 раз [2].
Частое сочетание АГ и дислипидемии объясняется непосредственным влиянием гиперхолестеринемии и дислипопротеинемии на тонус периферических сосудов и, следовательно, уровень АД [2]. Однако есть ограниченные данные, свидетельствующие и о влиянии повышенного АД на уровни липидов. Повышение активности ренин-ангиотензин-альдостероновой системы (РААС) дополнительно способствует процессу атерогенеза. Ангиотензин II, являясь основным эффектором РААС, способствует атерогенезу через стимуляцию ангиотензина 1 типа рецепторов (АТ1). Ангиотензин II стимулирует оксидативный стресс, потенцирующий вазоконстрикторную роль пептидов путем увеличения катаболизма оксида азота (NО), что может способствовать атерогенезу путем окисления липопротеинов низкой плотности. Оксидативный стресс, частично запущенный ангиотензином II, усиливает экспрессию молекул адгезии, хемоаттрактантных соединений и цитокинов [3, 4]. Дополнительно альдостерон увеличивает количество АТ1 рецепторов в сердечно-сосудистой системе и потенцирует эффекты РААС. Альдостерон играет немаловажную роль в развитии гипертрофии стенки сосудов и прогрессировании атеросклероза [5]. Гиперактивация РААС стимулирует атерогенез, вазоконстрикцию, и увеличивает содержание свободных радикалов, что способствует развитию как АГ, так и атеросклероза [6].
Сам по себе повышенный уровень АД способен повреждать эндотелий в результате гемодинамического удара и активации окислительного стресса, что приводит к повышению синтеза коллагена и фибронектина эндотелиальными клетками. Регуляция синтеза оксида азота зависит от сосудистой релаксации и повышения проницаемости для липопротеинов [7,8]. АГ также способна вызвать активацию ферментов липидного окисления [9]. Окисляясь, ЛПНП участвуют в образовании из моноцитов/макрофагов пенистых клеток, формирующих вместе с липидными включениями ядро атеросклеротической бляшки. При этом высвобождается множество активных субстанций (туморнекротический фактор, интерлейкины, факторы роста и др.), участвующих в процессах миграции и пролиферации гладкомышечных клеток сосудов, усилении синтеза и распада коллагена. В условиях липидной нагрузки эти процессы приобретают патологический характер, способствуют дисфункции эндотелия, что в итоге приводит к нарушению синтеза NO, увеличению продукции эндотелина-1 и вазоконстрикции. ЛПНП, особенно окисленные ЛПНП, являются одной из главных причин дисфункции эндотелия [10]. Таким образом, АГ способствует развитию атеросклероза и дополнительному повышению риска ССЗ.
Безусловно, при сочетании АГ и атеросклероза необходимо корригировать оба фактора риска одновременно, то есть назначать антигипертензивные препараты и статины [11]. Однако крайне важен и выбор антигипертензивного препарата, поскольку известно, что некоторые антигипертензивные препараты (тиазидные диуретики в больших дозах, неселективные бета-блокаторы) способны негативно влиять на липидный обмен [11].
В свете вышесказанного, особого внимания заслуживают антигипертензивные препараты, способные блокировать РААС, особенно сартаны. Один из представителей данного класса, олмесартан, обладает доказанным в ряде исследований, выраженным антиатеросклеротическим действием на различных этапах атерогенеза, независимо от возраста пациентов (рис.1).
В настоящее время главную роль в развитии неспецифического воспаления, в том числе при АГ и атерослерозе, отводят ангиотензину II, который активирует процессы воспаления в стенке сосудов посредством негемодинамических механизмов. Ангиотензин II стимулирует синтез ИЛ-6, ФНО-a и активизирует клеточный фактор. В свою очередь ФНО-a и ИЛ-6 активизируют синтез СРБ гепатоцитами. Ангиотензин II усиливает экспрессию молекул внутриклеточной адгезии, приводя к инфильтрации моноцитами и макрофагами стенки артерии с дальнейшим развитием неспецифического воспаления, на фоне ингибирования С-реактивным белком синтеза NO клетками эндотелия и влияния на экспрессию рецепторов гладкомышечных клеток к ангиотензину типа I. Усугубляется дисфункция эндотелия и вазоконстрикция, приводящие к повышению АД [12–14]. Имеется теория, согласно которой, неспецифическое воспаление – это патогенетически единая поликомпонентная биологическая реакция, которая формируется в организме в ответ на нарушение «чистоты внутренней среды» при появлении в ней эндогенных патогенов, одним из представителей которых является С-реактивный белок (СРБ) [12]. Опубликованы данные 10-летнего проспективного наблюдения за более чем 20000 здоровыми женщинами в возрасте старше 45 лет с исходно нормальным уровнем АД. У женщин с повышенным уровнем С-реактивного белка отмечалось более частое развитие АГ по сравнению с теми, у которых С-реактивный белок в крови был в пределах нормальных величин [15]. Сходные результаты были получены у 379 мужчин в течение 11-летнего наблюдения: у лиц с повышенным уровнем С-реактивного белка достоверно чаще развивалась АГ, чем при его отсутствии [16].
В исследовании EUTOPIA (European Trial on Olmesartan and Pravastatin in Inflammation and Atherosсlerоsis) оценивали влияние олмесартана медоксомила 20 мг на маркеры воспаления у пациентов с АГ (n=100) по сравнению с плацебо (n=99) [17]. Всего период наблюдения составил 12 недель [17]. Через 6 недель всем пациентам добавлялся правастатин 20 мг/день. Через 6 недель на фоне лечения олмесартаном медоксомилом отмечено достоверное снижение уровеня СРБ на 15% (р <0,05) (рис. 2), туморнекротического фактора альфа (TNF-a) — на 8,9% (р <0,02), интерлейкина-6 (IL-6) – на 14% (р <0,05); в группе плацебо достоверных изменений данных показателей не выявлено. В конце исследования на фоне комбинированной терапии олмесартаном медоксомилом плюс правастатин обнаружено еще большее снижение показателей сосудистого воспаления: СРБ – на 21,1% (р <0,01), TNF-a – на 13,6% (р <0,01), IL-6 – на 18% (р <0,01) [17]. На фоне изолированного приема правастатина динамика отсутствовала; его прием приводил только к существенному снижению уровня холестерина липопротеинов низкой плотности как в группе олмесартана, так и в группе плацебо. Такие изменения указывают на то, что олмесартан медоксомил наряду с антигипертензивным эффектом обладает противовоспалительным антиатерогенным эффектом у пациентов с АГ и атеросклерозом.
В MORE study (Multicentral Olmesartan Atherosclerosis Regression Evaluation) при помощи двух- и трехмерного УЗИ сонных артерий исследовали изменения толщины интимы-медии сосудистой стенки и объема атеросклеротических бляшек (исходный объем бляшки не менее медианного – 33,7 мл и более) в течение 2 лет на фоне приема олмесартана 20–40 мг по сравнению с атенололом 50–100 мг через 28, 52 и 104 недели терапии у пациентов с АГ (систолическое АД/диастолическое АД – 140–180/90–105 мм рт.ст.) [18]. В исследование было включено 155 больных АГ (77 больных в группе атенолола и 78 больных в группе олмесартана). Толщина интимы-медии и АД снижались одинаково на фоне приема олмесартана и атенолола, но лишь при приеме олмесартана, а не атенолола наблюдалось уменьшение объема больших атеросклеротических бляшек (на 11,5 мкл vs +0,6 мкл, соответственно, р=0,023 по сравнению с атенололом) (рис.3) [18]. При этом достоверное уменьшение среднего объема бляшки на фоне лечения олмесартаном отмечено уже через 28 недель лечения, через 52 и через 104 недели этот эффект усиливался, то есть происходило дальнейшее уменьшение объема атеросклеротической бляшки на фоне лечения олмесартаном (рис. 3) [18]. Следовательно, олмесартан достоверно улучшает измененную структуру артерий резистивного типа, независимо от снижения АД.
Вазопротективные свойства олмесартана оценивали также в исследовании VIOS (Vascular Improvement with Olmesartan medoxomil Study) [19]. Целью данного исследования была оценка влияния 12-месячного приема олмесартана (20–40 мг/сут) и атенолола (50–100 мг/сут) на сосудистое ремоделирование у 100 больных (61% мужчины, возраст 38–61 год) АГ 1-й степени при оптимальном контроле АД (целевое АД 120/80 мм рт.ст. и менее). Средняя длительность АГ на момент включения в исследования составила 10+9 лет. В конце периода наблюдения АД в группе олмесартана достоверно снизилось со 149+11/92+8 мм рт.ст. до 120+9/77+6 мм рт.ст., а в группе атенолола – со 147+10/90+6 до 125+12/78+7 мм рт.ст. У больных АГ через 1 год приема олмесартана достоверно уменьшилось отношение толщины сосудистой стенки к диаметру просвета сосуда (wall-to-lumen ratio, W/L) резистивных артерий в глютеальных подкожных биоптатах (11,1%±0,5 vs 14,9%±0,8 соответственно; р<0,01), в то время как в группе атенолола снижения отношения W/L не отмечено (рис. 4). Средние значения индекса аугментации (маркер сосудистой эластичности) достоверно снизились в группе олмесартана, но не изменились в группе атенолола. Таким образом, у больных с АГ 1-й степени терапия олмесартаном в течение 1 года способна привести к нормализации морфологии резистивных сосудов независимо от снижения уровня АД.
Антиатеросклеротические свойства олмесартана были выявлены также в проспективном рандомизированном многоцентровом исследовании OLIVUS (Impact of OLmesarten on progression of coronary atherosclerosis: evaluation by IntraVascular UltraSound) [21], в котором пациентов со стабильной стенокардией и АГ (n=247) рандомизировали либо в контрольную группу (без блокаторов РААС), либо в основную группу (олмесартан в дозе 10–40 мг, с титрованием дозы до 40 мг в течение 8 нед). Для лечения основного заболевания пациенты могли получать также бета-блокаторы, блокаторы кальциевых каналов, диуретики, нитраты, сахароснижающие препараты и статины. Исходно и через 12–16 месяцев лечения больным проводили внутрисосудистое ультразвуковое исследование. В группе олмесартана было отмечено значительное снижение объема атеромы (-0,7% vs. 3,1%) и скорости ее увеличения (0,6% по сравнению с 5,4%). У пациентов с АГ, согласно результатам другого исследования [22], только олмесартан, но не блокатор кальциевых каналов амлодипин, через 6 месяцев лечения улучшает эндотелиальную функцию коронарных артерий, значительно уменьшает сосудистое сопротивление в коронарных артериях, демонстрируя тем самым ангиопротективный эффект. В группе олмесартана резерв коронарного кровотока до лечения составлял 1,9 (отношение после/до введения аденозина), а через 6 месяцев терапии – 3,1 (p=0,005).
В 2010 году появились дополнительные результаты цитируемого выше исследования EUTOPIA, касающиеся белка остеопонтина – это плейотропный цитокин, которому придают ключевое значение в прогрессировании атеросклероза при АГ [23]. До начала участия в исследовании уровень остеопонтина у включенных больных был 32,85 нг/мл, тогда как у здоровых лиц группы контроля 23,82 нг/мл (p=0,027). Монотерапия олмесартаном и двойная терапия в комбинации с правастатином достоверно снижали уровень циркулирующего в сыворотке остеопонтина по сравнению с группой плацебо (p<0,001). Уровень этого белка, кроме того, положительно коррелировал с маркерами клеточного воспаления VCAM-1 (vascular cell adhesion moleсule-1) (r=0,27), ICAM-1 (ICAM-1 – intercelluar cell adhesion moleсule-1) (r=0,18), ИЛ-6 (r=0,35) и высокочувствительным С-реактивным белком (r=0,22); все показатели достоверны (p<0,01) [23].
В исследовании японских авторов [24] терапия как олмесартаном так и амлодипином обеспечивала достижение нормального АД, однако только в группе олмесартана были обнаружены дополнительные положительные ангиопротективные эффекты. Так, обнаружено снижение уровня СРБ, значительное улучшение эндотелиальной функции, антиоксидантной активности (снизился уровень 8-эпи-простагландина F2α мочи, увеличилась активность внеклеточной супероксиддисмутазы). Результаты исследования позволили авторам сделать заключение о том, что олмесартан улучшает функцию эндотелия и антиоксидантную активность крови вне зависимости от антигипертензивного эффекта [24]. E. Pimenta и соавт. [25] также сообщают, что олмесартан уменьшал выраженность воспаления и дисфункции эндотелия, способствовал регрессу ремоделирования сосудов.
Дополнительные, прежде всего ангиопротективные (противовоспалительные, антиатеросклеротические и др.) свойства препаратов важны, прежде всего, для увеличения продолжительности жизни и снижения риска сердечно-сосудистых осложнений. В этой связи результаты исследования OLIVUS-Ex [26] «венчают» имеющие многочисленные данные о важности ангиопротективных свойств олмесартана. Так, кумулятивная, свободная от нежелательных событий, выживаемость в группе олмесартана оказалась значительно выше, чем в группе плацебо. Терапия олмесартаном была признана хорошим способом профилактики «больших» (major) кардио- и цереброваскулярных осложнений [26].
Олмесартан обладает очень хорошим фармакокинетическим профилем [27]. Являясь пролекарством, он при приеме внутрь быстро гидролизуется, превращаясь в активный метаболит; биодоступность олмесартана составляет около 25% (прием пищи на биодоступность не влияет). Олмесартан связывается с белками крови на 99%, имеет 2 пути экскреции: выводится с желчью и мочой, поэтому при умеренном нарушении функции печени и почек (клиренс креатинина – КК – свыше 30 мл/мин) коррекция дозы не требуется; при КК более 20 мл/мин, согласно инструкции, применять препарат необходимо с осторожностью; у больных с КК менее 30 мл/мин – не следует превышать дозу олмесартана 20 мг/день; при КК менее 20 мл/мин, согласно инструкции, применение препарата противопоказано [27]. Пик концентрации в плазме крови достигается через 12 ч после приема препарата. Период полувыведения составляет 12–18 ч, что обеспечивает очень большую длительность действия – более 24 ч при однократном приеме в сутки [27].
Однако подавляющее большинство больных с АГ и дислипидемией и атеросклерозом, имеют, согласно таблице стратификации риска, высокий или даже очень высокий риск развития сердечно-сосудистых осложнений, и, следовательно, нуждаются в назначении комбинированной антигипертензивной терапии [11]. С каким препаратом лучше комбинировать олмесартан в данной клинической ситуации? Безусловно на первом месте стоят длительно действующие дигидропиридиновые антагонисты кальция. Именно комбинация блокаторов РААС (сартанов) с антагонистами кальция, в частности, с лерканидипином (дигидропиридиновый антагонист кальция третьего поколения сверхдлительного действия), согласно четвертой редакции российских рекомендаций по диагностике и лечению АГ (2010 г.) [11] является комбинацией первого выбора при сочетании АГ + дислипидемия, АГ + атеросклероз сонных и коронарных артерий, поскольку у антагонистов кальция также имеется антиатеросклеротический эффект. В исследованиях на животных и тканях человека выявлены некоторые возможные антиатеросклеротические механизмы действия лерканидипина, такие как угнетение пролиферации гладкомышечных клеток, торможение миграции миоцитов, угнетение эстерификации холестерина и, наконец, угнетение окисления холестерина-ЛПНП.
У антагонистов кальция была обнаружена способность уменьшать выраженность экспериментально вызываемого атеросклероза у животных, получающих высокохолестериновую диету. Этот эффект не был напрямую связан с уровнем липидов крови и уровнем АД. Была выдвинута гипотеза, предполагающая, что эти препараты могут оказывать прямое действие на пролиферацию и перемещение гладкомышечных клеток артериальной сосудистой стенки. Эти клетки играют ведущую роль в формировании атеросклеротической бляшки, которая, в конечном итоге, определяет клинические проявления и осложнения атеросклероза. Обычно при атеросклерозе мышечные клетки сосудистой стенки подвергаются фенотипическим изменениям, в результате которых клетка приобретает способность быстро пролиферировать и секретировать экстрацеллюлярный матрикс. Данные фенотипические изменения при атеросклеротическом процессе происходят очень рано. Пролиферация гладкомышечных клеток сосудистой стенки – ведущий фактор атеросклеротического поражения сосудов.
Антиатеросклеротическая активность лерканидипина в концентрации 10–50 мкмоль/л изучалась в эксперименте на изолированных миоцитах из аорты крыс [28]. Лерканидипин вызывал угнетение пролиферации миоцитов. Степень угнетения пролиферации миоцитов зависела от дозы препарата. Сопоставимые эффекты были получены при исследовании миоцитов человека – ингибирование пролиферации миоцитов человека, ингибирование фибриноген-индуцированной миграции миоцитов [28]. В исследовании in vitro показано, что антагонисты кальция способны изменять метаболизм липидов в клеточных мембранах [29]. Это связывают с влиянием антагонистов кальция на проникновение холестерина внутрь клетки, влиянием на внутриклеточный катаболизм холестерина, опосредованно, через рецепторный аппарат клеток; а также с влиянием на внутриклеточный перенос холестерина. Антиатеросклеротическое действие лерканидипина изучали в эксперименте на кроликах, получающих высокохолестериновую диету [29]. Оценивали выраженность поражения аорты при пережатии ее силиконовым зажимом. Применение лерканидипина существенно уменьшало выраженность атеросклеротического поражения аорты на всех уровнях (грудная, брюшная аорта) [29].
Таким образом, антигипертензивная терапия при сочетании АГ и дислипидемии/атеросклероза должна состоять из комбинации блокатора РААС с дигидропиридиновым антагонистом кальция. Одной из оптимальных комбинаций является комбинация олмесартана с лерканидипином.
Литература
1. Павлова О.С. Современные возможности эффективной сердечно–сосудистой профилактики у пациентов с артериальной гипертензией и дислипидемией. Мед. новости. 2012; 1: 62–68.
2. Артериальная гипертония, нарушения липидного обмена и атеросклероз. В.В. Кухарчук. В «Руководство по артериальной гипертонии» / Под ред. Е.И.Чазова, И.Е.Чазовой. М.: Медиа Медика, 2005; 289–299.
3. Klahr S., Morrissey J.J. The role of vasoactive compounds, growth factors and cytokines in the progression of renal disease. Kidney Int. 2000; 57; Suppl 75: 7–14.
4. Wolf G. The Renin-Angiotensin System and Progression of Renal Disease. Jn: Contributions to Nephrology. Editor G. Wolf. 2001.
5. Delcayre C., Swynghedauw B. Molecular mechanisms of myocardial remodelling. The role of aldosterone. J. Mol. Cell. Cardiology. 2002; 34: 1577–1584.
6. Ross R. Atherosclerosis an inflammatory disease. N Engl J Med. 1999; 340:115–26.
7. O’Donnell VB. Free radicals and lipid signaling in endothelial cells. Antiox Redox Signal. 2003; 5: 195–203.
8. Wolfrum S., Jensen K.S., Liao J.K. Endothelium-dependent effects of statins. Arterioscler Thromb Vasc Biol. 2003; 23: 729–36.
9. Kaplan M., Aviram M. Oxidized low density lipoprotein: atherogenic and proinflammatory characteristics during macrophage foam cell formation. An inhibitory role for nutritional antioxidants and serum paraoxonase. ClinChem Lab Med. 1999; 37: 777–87.
10. Campese V.M., Bianchi S., Bigazzi R. Association between hyperlipidemia andmicroalbuminuria in essential hypertension. Kidney Int. 1999; 56 (Suppl 71): S10–3.
11. Диагностика и лечение артериальной гипертензии. Системные гипертензии. 2010; 3: 5–26.
12. Ощепкова Е.В., Дмитриев В.А., Титов В.Н. и соавт. Показатели неспецифического воспаления у больных гипертонической болезнью. Тер. Арх. 2007; 12: 18–25.
13. Breiser A., Recinos A., Eledrisi M. Vascular inflammation and the renin-angiotensen system. Atherioscler. Thromb Vasc. Biol. 2002; 22; 1257–1266.
14. Verma S., Bucshanan M., Anderson T. Endothelial function testing as a biomarker of vascular disease. Circulation. 2003; 108: 2054–2059.
15. Sesso H., Burning J., Rifai N. et al. C-reactive protein and the risc of developing hypertension. JAMA. 2003; 290: 2945–2951.
16. Niscanen L., Laaksonen D., Nyyssonep K. et al. Inflammation, abdominal obesity and smoking as predictors of hypertension. Hypertension. 2004; 44 (6): 859–865.
17. Fliser D., Buchholz K., Haller H. For the European Trial on Olmesartan and Pravastatin in Inflammation and Atherosclerosis (EUTOPIA) Investi Circulation. 2004; 110: 1103–7.
18. Stumpe K.O., Agabiti-Rosei E., Zielinski T. et al. Carotid intima-media thickness and plaque volume changes following 2-year angiotensin II-receptor blockade. The Multicentre Olmesartan atherosclerosis Regression Evaluation (MORE) study. Ther. Adv. Cardiovasc. Dis. 2007; 1: 97–106.
19. Smith R.D., Yokoyama H., Averill D.B. et al. The protective effects of angiotensin II blockade with olmesartan medoxomil on resistance vessel remodeling (The VIOS study): rationale and baseline characteristics. Am J Cardiovasc Drugs. 2006; 6 (5): 335–42.
20. Smith R.D., Yokoyama H., Averill D.B., Schiffrin E.L., Ferrario C.M. Reversal of vascular hypertrophy in hypertensive patients through blockade of angiotensin II receptors. J Am Soc Hypertens. 2008; 2: 165–172.
21. Hirohata A., Yamamoto K., Miyoshi T. et al. Impact of olmesartan on progression of coronary atherosclerosis a serial volumetric intravascular ultrasound analysis from the OLIVUS (impact of OLmesarten on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) trial. J Am Coll Cardiol. 2010; 55 (10): 976–82.
22. Naya M., Tsukamoto T., Morita K. et al. Olmesartan, but not amlodipine, improves endothelium-dependent coronary dilation in hypertensive patients. J Am Coll Cardiol. 2007; 50 (12): 1144–9.
23. Lorenzen J.M., Neuhoeffer H., David S. Angiotensin II receptor blocker and statins lower elevated levels of osteopontin in essential hypertension – results from the EUTOPIA trial. Atherosclerosis. 2010; 209 (1): 184–8.
24. Takiguchi S., Ayaori M., Uto-Kondo H. et al. Olmesartan improves endothelial function in hypertensive patients: link with extracellular superoxide dismutase. Hypertens Res. 2011; 34 (6): 686–92.
25. Pimenta E., Oparil S. Impact of olmesartan on blood pressure, endothelial function and cardiovascular outcomes. Integr Blood Press Control. 2010; 3:113–23.
26. Hirohata A., Yamamoto K., Miyoshi T. et al. Four-year clinical outcomes of the OLIVUS-Ex (impact of Olmesartan on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) extension trial. Atherosclerosis. 2012; 220 (1): 134–8.
27. Brunner H.R. The new oral angiotensin II antagonist olmesartan medoxomil: a concise overview. J Hum Hypertens. 2002; 16 (Suppl. 2): S13–16.
28. Corsini A. et al. Blood Pressure. 1998; 7 (Suppl 2): 18–22.
29. Catapano A. Cardiologia. 1997; 42 (Suppl 3): 19–26.